Brachial artery modifications to blood flow-restricted handgrip training and detraining.
نویسندگان
چکیده
Low load resistance training with blood flow restriction (BFR) can increase muscle size and strength, but the implications on the conduit artery are uncertain. We examined the effects of low-load dynamic handgrip training with and without BFR, and detraining, on measures of brachial artery function and structure. Nine male participants (26 ± 4 yr, 178 ± 3 cm, 78 ± 10 kg) completed 4 wk (3 days/wk) of dynamic handgrip training at 40% 1 repetition maximum (1RM). In a counterbalanced manner, one forearm trained under BFR (occlusion cuff at 80 mmHg) and the other under nonrestricted (CON) conditions. Brachial artery function [flow-mediated dilation (FMD)] and structure (diameter) were assessed using Doppler ultrasound. Measurements were made before training (pretraining), after training (posttraining), and after 2-wk no training (detraining). Brachial artery diameter at rest, in response to 5-min ischemia (peak diameter), and ischemic exercise (maximal diameter) increased by 3.0%, 2.4%, and 3.1%, respectively, after BFR training but not after CON. FMD did not change at any time point in either arm. Vascular measures in the BFR arm returned to baseline after 2 wk detraining with no change after CON. The data demonstrate that dynamic low-load handgrip training with BFR induced transient adaptations to conduit artery structure but not function.
منابع مشابه
Handgrip exercise increases postocclusion hyperaemic brachial artery dilatation.
OBJECTIVE To examine the effect of handgrip exercise induced ischaemia on non-invasive assessment of endothelial function in the brachial artery. DESIGN AND SETTING High frequency ultrasound was used to measure brachial artery diameter at rest and after reactive hyperaemia induced by forearm cuff occlusion with and without handgrip exercise induced ischaemia. SUBJECTS 10 healthy subjects, <...
متن کاملBlood Vessels Shear Stress Mediates Endothelial Adaptations to Exercise Training in Humans
Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period ...
متن کاملExercise-mediated changes in conduit artery wall thickness in humans: role of shear stress.
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflati...
متن کاملIsometric handgrip training does not improve flow-mediated dilation in subjects with normal blood pressure.
Isometric HG (handgrip) training lowers resting arterial BP (blood pressure), yet the mechanisms are elusive. In the present study, we investigated improved systemic endothelial function as a mechanism of arterial BP modification following isometric HG training in normotensive individuals. This study employed a within-subject repeated measures design primarily to assess improvements in BA FMD (...
متن کاملShear stress mediates endothelial adaptations to exercise training in humans.
Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 112 6 شماره
صفحات -
تاریخ انتشار 2012